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‘Middle censoring’ is a very general censoring scheme where the actual value of an observation in the data
becomes unobservable if it falls inside a random interval (L, R) and includes both left and right censoring.
In this paper, we consider discrete lifetime data that follow a geometric distribution that is subject to
middle censoring. Two major innovations in this paper, compared to the earlier work of Davarzani and
Parsian [3], include (i) an extension and generalization to the case where covariates are present along
with the data and (ii) an alternate approach and proofs which exploit the simple relationship between
the geometric and the exponential distributions, so that the theory is more in line with the work of Iyer
et al. [6]. It is also demonstrated that this kind of discretization of life times gives results that are close
to the original data involving exponential life times. Maximum likelihood estimation of the parameters is
studied for this middle-censoring scheme with covariates and their large sample distributions discussed.
Simulation results indicate how well the proposed estimation methods work and an illustrative example
using time-to-pregnancy data from Baird and Wilcox [1] is included.

Keywords: middle censoring; EM algorithm; accelerated failure time model; exponential distribution;
geometric distribution; discrete censoring

1. Introduction

Middle censoring is a very general censoring scheme introduced in [7]. It refers to situations
where some of the observations become unobservable because they happen to fall within a ran-
dom censoring interval. For some individuals, the exact values are available while for others, the
corresponding intervals are observed. If a subject is temporarily absent or withdrawn from study
and the event of interest occurs during this time interval, the exact time of occurrence cannot
be observed but instead only the censoring interval is observed. The more commonly studied
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2 S.R. Jammalamadaka and E. Leong

right-censoring and left-censoring can be viewed as special cases of this middle censoring by
suitable choice of this censoring interval. Some examples where middle-censoring may occur
are (i) equipment failure that could occur during a period where observation is not possible or is
not being made (ii) in biomedical studies, a patient under observation may be absent from study
for a short period during which time the event of interest may occur, for example, in the study
of African infant precocity by Leiderman et al. [9] where the time from birth to the learning
time was the variable of interest. If the observation was not possible during a fixed time interval
(a random interval relative to the individual’s lifetime) such as the temporary closure of the clinic
due to an outbreak of war say, and some children developed the skill during this time, the exact
age of these children at the time of skill development are not observed but rather only the infor-
mation that the event of interest occurred during this time interval. Other authors have studied
this situation under the labels partially interval-censored data and mixed interval-censored data
(see Huang [5] and Yu et al. [11]).

The middle-censoring scheme can be described in the following notations. Assume that there is
a random sample of individuals of size n from a specific population with lifetimes T1, T2, . . . , Tn,
where not all these Ti are observable. Corresponding to the ith individual in the sample, there is a
random censoring interval (Li, Ri) which is independent of the lifetime so that the observed data
Xi’s are given by

Xi =
{

Ti if Ti /∈ (Li, Ri),
(Li, Ri) if Ti ∈ (Li, Ri)

for i = 1, 2, . . . , n.
Jammalamadaka and Mangalam [7] developed a self-consistent estimator and the non-

parametric maximum likelihood estimator for the middle-censored data. Jammalamadaka and
Iyer [8], then suggested an approximate self-consistent estimator and established its weak con-
vergence. Iyer et al. [6] considered middle-censoring scheme in a parametric set-up when the
lifetime distributions are exponentially distributed. They consider maximum likelihood and
Bayes estimates of the relevant parameters. Middle-censoring in a discrete set-up was discussed
by Davarzani and Parsian [3] (DP[3] from now on) where the lifetimes as well as the lower limit
and length of censoring interval are assumed to have geometric distributions.

In this paper, we consider lifetimes that follow a geometric distribution as in DP [3] but we
generalize their set-up to the important case where covariates are present as well as provide
alternate results and proofs by exploiting the elegant relationship between the exponential and
geometric distributions. In Section 2.1, we discuss this connection and use it in Section 2.2 to find
the maximum likelihood estimates (MLEs) under middle-censoring in the presence of covariates
using the accelerated failure time model for the geometric case and discuss the EM algorithm
for obtaining them. The novelty of our approach, contrasted with that in DP [3], is to adapt the
methods of Iyer et al. [6] to the geometric case. Simulation studies are carried out in support
of the theory to indicate how well the proposed estimation methods work. We also consider
the asymptotic distribution of the MLE in terms of Fisher information. Section 3 illustrates the
application of the proposed model to time-to-pregnancy study from Baird and Wilcox [1].

2. An alternate approach to discrete lifetimes and with covariates

In this section, first we show how one can utilize the connection between the geometric and
exponential distributions so that the results in DP can be subsumed by what has been done in [6]
for exponential data. This connection will also allow us to more readily extend the results to the
case of covariates, as we do in Section 2.2.
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2.1 An important link

As is known, the geometric distribution is the discrete analogue of the exponential distribution
and the following well-known lemma provides the elegant connection between the two. We add
the short proof for completeness and to describe the notations:

Lemma 1 If X is an exponentially distributed random variable with parameter λ, then Y = �X�
where � � is the floor function (the integer part of x), is a geometrically distributed random
variable with parameter p = 1 − e−λ.

Proof Let X ∼ exp(λ) with p.d.f. f (x) = λe−λx. Suppose we have Y = �X�. Then,

P(�X� = a) = P(a ≤ X < a + 1) = e−aλ(1 − e−λ) = (1 − p)ap

Therefore, Y = �X� ∼ geometric(p) where p = 1 − e−λ, a = 0, 1, 2, . . ., 0 ≤ p ≤ 1 and λ > 0.
�

The geometric distribution also inherits the interesting property known as the memoryless
property which the exponential distribution has. For integers s > t, it is the case that

P(X > s|X > t) = P(X > s − t),

that is, the geometric distribution ’forgets’ what has occurred. The probability of getting an
additional s − t failures, having already observed t failures is the same as the probability of
observing s − t failures at the start of the sequence.

Applying the property of memorylessness and using the relationship of exponential and geo-
metric distributions from Lemma 1 to middle censoring, the geometric lifetimes can be generated
from the exponentially distributed lifetime, Ti ∼ Exp(λ).The geometric distributed lifetimes is
Yi = �Ti� ∼ geometric(p) with probability function

P(Yi = yi) = p(1 − p)yi

for yi = 0, 1, 2, . . . and p = 1 − e−λ.
The left point of the censored interval is Ui = �Li� ∼ geometric(pu) with probability function

P(Ui = ui) = pu(1 − pu)
ui ,

where Li ∼ Exp(α), pu = 1 − e−α and ui = 0, 1, 2, . . . while the length of the censored interval
is Wi = �Si� ∼ geometric(pw) with probability function

P(Wi = wi) = pw(1 − pw)wi−1,

where Si ∼ Exp(β) , Si = Ri − Li, pw = 1 − e−β , wi = 1, 2, . . . and Wi = Vi − Ui, where Vi is
the right point of the censored interval. The lifetimes Yi, Ui and Wi are independent for all i.

2.2 Geometric model in the presence of covariates

In this section, we consider a geometric lifetime with middle censoring in the presence of covari-
ates. The covariates that we consider here are fixed, that is, known at baseline or entry to the
study. The relationship between an exponential distribution and the geometric distribution dis-
cussed in Section 2.1 can be applied here for a geometric lifetime in the presence of covariates.
Here, each person has a survival time, Ti and covariates specific to that individual Z i.
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4 S.R. Jammalamadaka and E. Leong

It may be recalled that when the baseline distribution is an exponential, the Cox proportional
hazard assumption is equivalent to the accelerated failure time assumption. See, for example,
Cox and Oakes [2, p. 70–72] who show that the exponential regression model is an example
of an accelerated failure time model with proportional hazards. Hence, the lifetimes, Ti are first
generated from an exponential accelerated failure model or a Cox PH model when the baseline
distribution is the exponential distribution, that is, Ti ∼ Exponential(λeθTZ i) with p.d.f.

f (t|Z i) = λeθTZ i exp(−λeθTZ i t)

where θ is the effect of each covariate Z and the superscript T stands for transpose operation.
Hence, one can generate geometric lifetimes from the generated exponential lifetime, that is, Yi =
�Ti� ∼ geometric(pi), where pi = 1 − e−λeθTZi . We take the left end point of the censored interval
U i ∼ geometric(pu) while the width of the censored interval is taken to be W i ∼ geometric(pw),
where W i = V i − U i and V i is the right-censored point of the censored interval.

Since the model is completely parametric, the likelihood can be written down and the MLE
of p can be solved. Suppose that there are n1 > 0 uncensored observations and n2 > 0 cen-
sored observations, where n = n1 + n2. After re-ordering the data, without loss of generality,
it is assumed that the first n1 are the uncensored observations while the remaining n2 are the
censored observations. Hence, the observed data are

{Y1, Y2, . . . , Yn1 , [Un1+1, Vn1+1], [Un1+2, Vn1+2], . . . , [Un1+n2 , Vn1+n2 ]}.
Similar to the methods used in DP [3] in Section 2, the likelihood function of the observed

data is written as

L(pi) = cpn1
i (1 − pi)

(
∑n1

i=1 yi+
∑n1+n2

i=n1+1 ui)

n1+n2∏
i=n1+1

(1 − (1 − pi)
wi+1), (1)

where c = cn2
1 cn1

2 is the normalizing constant which does not depend on pi, where pi = 1 −
e−λeθTZi . From Equation (1), the log-likelihood function of pi is

l(pi) = ln(c) + n1ln(pi) +
n1∑

i=1

yiln(1 − pi) +
n1+n2∑

i=n1+1

uiln(1 − pi) +
n1+n2∑

i=n1+1

ln(1 − (1 − pi)
wi+1).

(2)
Applying the EM algorithm to find the MLE of p, the following conditional expectation is
required:

Ep(Y |U ≤ Y ≤ V ) =
V∑

y=U

yPp(Y = y|U ≤ Y ≤ V )

=
[
U + (1 − p) − (W + 1)(1 − p)W+1 + W(1 − p)W+2

(1 − (1 − p)W+1)(1 − (1 − p))

]
. (3)

Equation (3) is used as the E-step in the EM-algorithm and the pseudo-log-likelihood is given as

l∗(pi) ∝ nln(pi) +
n1∑

i=1

yiln(1 − pi) +
n1+n2∑

i=n1+1

y∗
i ln(1 − pi), (4)

where

y∗
i = Epi(Yi|Ui ≤ Yi ≤ Vi) =

[
Ui + (1 − pi) − (Wi + 1)(1 − pi)

Wi+1 + Wi(1 − pi)
Wi+2

(1 − (1 − pi)Wi+1)(1 − (1 − pi))

]
.
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Thus, the EM algorithm can be set up as follows. Choose p0 to be the MLE of the uncensored
data. Update the estimates with the following steps.

• Step 1 Suppose that p(j) is the jth estimate.
• Step 2 Compute Y ∗

i by using Equation (3) with p = p(j).
• Step 3 Solve Equation (4) for its maximum and set p(j+1) as that maximum.
• Step 4 Repeat until a convergence criterion is met.

A simulation study is performed to illustrate the usefulness of this approach. Simulations are
carried out in R using N = 100 replications with a common sample size n = 250. Each sample
is then censored and the EM algorithm described above is applied to the censored data. The
censoring mechanism is as follows; the left end point of the censored interval is Geometric
distributed with mean 0.5 and the length of the censored interval is also Geometric distributed
but with mean 0.1. Three covariates are used in this simulation. The covariates Z1 and Z2 are
generated from a Binomial distribution with one trial and probability of success equal to 0.5.
The third covariate, Z3 is generated from a standard Normal distribution. Three cases for the true
covariate effects are considered here, similar to Pan [10]. They are θ = (1, 1, 1), θ = (1, 0, 0)

and θ = (0, 0, 1) and are chosen since they represent the case where the covariates have an equal
effect, where only one Bernoulli covariate has one effect and where only the Normally distributed
covariate had an effect. The true values of λ are chosen to be 0.5 and 0.3 as given in Table 1. A

Table 1. Simulation results for the geometric model in the presence of three covariates.

Parameter True Value MLE SD EMSE C.I. Censored Prop

λ 0.5 0.5301 0.0102 0.0072 (0.5101, 0.5501) 0.1562
θ1 1.0 1.0308 0.0286 0.0087 (0.9747, 1.0869)
θ2 1.0 1.0387 0.0211 0.0088 (0.9973, 1.0801)
θ3 1.0 1.0597 0.0174 0.0026 (1.0256 1.0938)

λ 0.5 0.5321 0.0080 0.0127 (0.5164, 0.5478) 0.2058
θ1 1.0 1.0715 0.0266 0.0051 (1.0194,1.1237)
θ2 0.0 −0.0171 0.0289 0.0030 (−0.0737,0.0395)
θ3 0.0 −0.0052 0.0261 0.0033 (−0.0564, 0.0460)

λ 0.5 0.5410 0.0210 0.0159 (0.4998,0.5822) 0.2596
θ1 0.0 0.0056 0.0464 0.0035 (−0.0853, 0.0965)
θ2 0.0 −0.0085 0.0365 0.0021 (−0.0800, 0.0630)
θ3 1.0 1.1155 0.0158 0.0133 (1.0845, 1.1465)

λ 0.3 0.3384 0.0110 0.0015 (0.3168, 0.3600) 0.1972
θ1 1.0 1.0187 0.0366 0.0030 (0.9470, 1.0904)
θ2 1.0 1.1822 0.0279 0.0032 (1.1275, 1.2369)
θ3 1.0 1.0515 0.0175 0.0026 (1.0172, 1.0858)

λ 0.3 0.3529 0.0301 0.0028 (0.2939, 0.4119) 0.2952
θ1 1.0 1.1160 0.0710 0.0134 (0.9768, 1.2552)
θ2 0.0 −0.0283 0.0510 0.0008 (−0.1283, 0.0717)
θ3 0.0 −0.0029 0.0333 0.0018 (−0.0682, 0.0624)

λ 0.3 0.3364 0.0200 0.0013 (0.2972, 0.3756) 0.2982
θ1 0.0 0.0144 0.0594 0.0042 (−0.01020, 0.1308)
θ2 0.0 0.0158 0.0413 0.0022 (−0.0651, 0.0967)
θ3 1.0 1.0590 0.0155 0.0035 (1.0286, 1.0894)
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6 S.R. Jammalamadaka and E. Leong

number of different starting points were used in the EM-algorithm in order to capture the global
maximum.

The ‘MLE’ reported is the average value of the N = 100 estimates obtained and the estimated
mean-squared error, EMSE is calculated using the equation

EMSE(p̂) = 1

N

N∑
i=1

(p̂ − p)2

where p̂ is the estimate of p and a total of N simulation were computed. The standard deviation
(SD) of the estimates is evaluated in the simulation and their confidence intervals (C.I.) could be
evaluated. The ‘Censored proportion’ line in the table gives the mean proportion of censoring in
the N = 100 simulated samples.

In the N = 100 simulations, the samples were found to be between 14% and 29% censored.
The MLEs of λ, θ1, θ2, θ3 were computed using the EM algorithm described above. See Table 1
for the results from these simulations. The MLEs are fairly close to the actual value and the
EMSE are small. This approach yields very useful, accurate and reliable results. Note that we
initialized the EM-algorithm from a number of different starting points and it shows that the
likelihood does have a unique maximum.

2.3 The case of no covariates

The case where there are no covariates which is considered in DP[3] comes out as a special case
of what we already have, by taking Z = 0. In this case, the likelihood function of the observed
data is written as in Equation (1) but with p = 1 − e−λ. The log-likelihood function of p, the
conditional expectation for the E-step of the EM-algorithm and the pseudo-log-likelihood are
shown in Equations (2)–(4), respectively. Hence, the EM algorithm is set up as follows. Choose
p(0) to be the MLE of the uncensored data, that is, p(0) = n1/(n1 +∑n1

i=1 yi). Update the estimates
with the following steps.

• Step 1 Suppose that p(j) is the jth estimate
• Step 2 Compute Y ∗

i by using Equation (3) with p = p(j)

• Step 3 Set p(j+1) = n/(n +∑n1
i=1 yi +∑n1+n2

i=n1+1 y∗
i )

• Step 4 Repeat until convergence is met.

Simulations are run in order to test the validity of the program. We considered different sample
sizes namely n = 50, 100, 250 and 500. For each sample size n, N = 100 samples were simu-
lated. Each sample was then censored and the EM algorithm described above was applied to
the censored data. See Table 2 for the results from these simulations. The ‘p est’ reported is the
average value of the N = 100 estimates obtained. The geometric model converges numerically
to the true value in all cases, which is consistent with the result found in DP [3] for the geometric
lifetimes. The estimates are converging to the true values as the sample size n increases but it
appears to converge rather slowly.

2.4 Asymptotic distribution of the MLE

It can be checked that the conditions for the validity of the properties of the MLEs, hold. For
completeness, we give below the derivatives of the log-likelihood function from Equation (2),
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Journal of Applied Statistics 7

Table 2. Simulation results for Geometric (0.3) lifetimes.

n (pl, pz) (0.5,0.9) (0.2,0.9) (0.3,0.8)

50 p est 0.3159 0.3109 0.3097
EMSE of p 0.0017 0.0019 0.0018

SD 0.0288 0.0276 0.0309
Censored proportion 0.1526 0.1538 0.0912

C.I. (0.2595, 0.3723) (0.2568, 0.3650) (0.2491, 0.3703)

100 p est 0.3092 0.3095 0.3086
EMSE of p 0.0009 0.0008 0.0008

SD 0.0236 0.0229 0.0227
Censored proportion 0.1438 0.1628 0.1003

C.I. (0.2629, 0.3555) (0.2646, 0.3544) (0.2641, 0.3531)

250 p est 0.3056 0.3077 0.3050
EMSE of p 0.0005 0.0006 0.0005

SD 0.0178 0.0176 0.0170
Censored proportion 0.1471 0.1592 0.0968

C.I. (0.2707, 0.3405) (0.2732, 0.3422) (0.2717, 0.3383)

500 p est 0.3054 0.3065 0.3035
EMSE of p 0.0002 0.0002 0.0002

SD 0.0136 0.0135 0.0131
Censored proportion 0.1468 0.1605 0.0946

C.I. (0.2787, 0.3321) (0.2770, 0.3330) (0.2778, 0.3292)

where p = 1 − e−λeθTZi :

∂l

∂λ
=

n1∑
i=1

eθTZ i

eλeθTZi − 1
−

n1∑
i=1

yie
θTZ i −

n1+n2∑
i=n1+1

uie
θTZ i +

n1+n2∑
i=n1+1

eθTZ i(wi + 1)

eλeθTZi (wi+1) − 1

and for j = 1, 2, 3,

∂l

∂θ j
=

n1∑
i=1

Z jλeθTZ i

eλeθTZi − 1
−

n1∑
i=1

yiZ jλeθTZ i −
n1+n2∑

i=n1+1

uiZ jλeθTZ i +
n1+n2∑

i=n1+1

Z jλeθTZ i(wi + 1)

eλeθTZi (wi+1) − 1
.

The second derivatives are given by

∂2l

∂λ2
= −

n1∑
i=1

eλeθTZi +2(θTZ i)

(eλeθTZi − 1)2
−

n1+n2∑
i=n1+1

(
(wi + 1)2eλeθTZi (wi+1)+2(θTZ i)

(eλeθTZi (wi+1) − 1)2

)

∂2l

∂λ∂θj
= −

n1∑
i=1

ZjeθTZ i(λeλeθTZi +θTZ i − eλeθTZi + 1)

(eλeθTZi − 1)2
−

n1∑
i=1

yiZje
θTZ i −

n1+n2∑
i=n1+1

uiZje
θTZ i

−
n1+n2∑

i=n1+1

(wi + 1)ZjeθTZ i(λ(wi + 1)eλ(wi+1)eθTZi +θTZ i − eλ(wi+1)eθTZi + 1)

(eλ(wi+1)eθTZi − 1)2
(5)
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8 S.R. Jammalamadaka and E. Leong

∂2l

∂θ2
j

= −
n1∑

i=1

Z2
j λeθTZ i(λeθTZ i+λeθTZi − eλeθTZi + 1)

(eλeθTZi − 1)2
−

n1∑
i=1

yiZ
2
j λeθTZ i −

n1+n2∑
i+n1+1

uiZ
2
j λeθTZ i

−
n1+n2∑

i=n1+1

Z2
j λ(wi + 1)eθTZ i(λ(wi + 1)eθTZ i+λ(wi+1)eθTZi − eλ(wi+1)eθTZi + 1)

(eλ(wi+1)eθTZi − 1)2
(6)

∂2l

∂θj∂θk
= −

n1∑
i=1

ZjZkλeθTZ i(λeθTZ i+λeθTZi − eλeθTZi + 1)

(eλeθTZi − 1)2
−

n1∑
i=i

yiZjZkλeθTZ i

−
n1+n2∑

i=n1+1

uiZjZkλeθTZ i

−
n1+n2∑

i=n1+1

ZjZkλ(wi + 1)eθTZ i(λ(wi + 1)eθTZ i+λ(wi+1)eθTZi − eλeθTZi + 1)

(eλeθTZi − 1)2
. (7)

By substituting the MLE found by using the algorithm above into the information matrix,
we obtain the ‘observed information’ matrix, namely the Hessian matrix of the log-likelihood
function (see Efron and Hinkley [4]) as follows:

Î4×4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂2l

∂λ2

∂2l

∂λ∂θ1

∂2l

∂λ∂θ2

∂2l

∂λ∂θ3

∂2l

∂θ1∂λ

∂2l

∂θ2
1

∂2l

∂θ1∂θ2

∂2l

∂θ1∂θ3

∂2l

∂θ2∂λ

∂2l

∂θ2∂θ1

∂2l

∂θ2
2

∂2l

∂θ2∂θ3

∂2l

∂θ3∂λ

∂2l

∂θ3∂θ1

∂2l

∂θ3∂θ2

∂2l

∂θ2
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where λ = λ̂ and θi = θ̂i. Hence, θ̂ = (λ̂, θ̂1, θ̂2, θ̂3) is asymptotically Normal with mean zero and
covariance I(θ)−1. This large sample approximation can be used to construct the required C.I.,
as we do in Section 2.2 and the ensuing illustration.

3. A practical example

In this section, we apply the proposed techniques to a time-to-pregnancy data in [1]. The study
classified women as either smokers or non-smokers where a ‘current smoker’ is defined as a
woman who smokes an average of one or more cigarettes per day during the first cycle in which
she was trying to get pregnant. A total of 586 women were asked the number of cycles required
to conceive. A couple is considered clinically infertile after 12 unsuccessful cycles, so medical
interventions tend to begin after the 12th unsuccessful cycle. The number of menstrual cycles to
pregnancy is our discrete survival time and we take the variable smoke (Z1) as the covariate with
regression coefficient θ1.

For the complete data set, it is observed that the MLEs of λ and θ1 are 0.3150 and −0.3136,
respectively. In order to create a set of middle-censored data, we randomly choose several actual
failure data and replace them by random censoring intervals. The data were censored by a random
interval whose left end was a geometric random variable with mean 5 and the width was geo-
metric with mean 10. It is found that 26.79% of data were censored resulting in 429 uncensored
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observations and 157 censored observations. Applying the model given in Section 2.2, it is found
that the estimates of the regression coefficients are λ̂ = 0.3045 and θ̂1 = −0.3189. The 95% C.I.
based on the asymptotic distribution of λ and θ1 are (0.2754, 0.3336) and (−0.5446, −0.0932),
respectively.

In order to assess how much of a change it makes in the estimates or C.I. when one uses
the discretized geometric distribution in lieu of the original exponential distribution, we fit this
model with the exponential distribution instead of the geometric distribution. The estimates of
the regression coefficients are λ̂ = 0.3303 and θ̂1 = −0.3343. The 95% C.I. based on the asymp-
totic distribution of λ and θ1 are (0.3181,0.3425) and (−0.5404, −0.1282), respectively. The
data were censored exactly like the geometric case resulting in 27.13% censored observations,
specifically 427 uncensored observations and 159 censored observations. These comparisons
show that the estimates are very close as are the C.I.

4. Conclusion

We considered inference for discrete lifetimes, when the data are middle-censored and extend
it to the case when covariates are present. We validate and confirm the estimation and infer-
ence procedures discussed, from extensive simulation studies, which show that the MLEs of the
regression coefficients are very close to the true values in all the cases. The model is applied to
a real data set on Stanford heart transplant survival and is shown to give very meaningful and
useful results.
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